Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Association mapping in Populus reveals the interaction between Pto-miR530a and its target Pto-KNAT1.

Identifieur interne : 001E83 ( Main/Exploration ); précédent : 001E82; suivant : 001E84

Association mapping in Populus reveals the interaction between Pto-miR530a and its target Pto-KNAT1.

Auteurs : Xiaohui Yang [Oman] ; Qingzhang Du ; Jinhui Chen ; Bowen Wang ; Deqiang Zhang

Source :

RBID : pubmed:25833262

Descripteurs français

English descriptors

Abstract

MAIN CONCLUSION

We used transcript profiling and multi-SNP association to investigate the genetic regulatory relationship between miRNA Pto-miR530a and its target Pto-KNAT1, identifying additive, dominant, and epistatic effects. MicroRNAs (miRNAs) play crucial roles in the post-transcriptional regulation of plant growth and development; indeed, many studies have described the importance of miRNA-target interactions in herbaceous species. However, elucidation of the miRNA-target interactions in trees may require novel strategies. In the present study, we describe a strategy combining expression profiling by reverse transcription quantitative PCR (RT-qPCR) and association mapping with multiple single nucleotide polymorphisms (SNPs) to evaluate the interaction between Pto-miR530a and its target Pto-KNAT1 in Populus tomentosa. RT-qPCR analysis showed a negative correlation (r = -0.62, P < 0.05) between expression levels of Pto-miR530a and Pto-KNAT1 in eight tissues. We used a Bayesian hierarchical model to identify allelic variants of Pto-miR530a and Pto-KNAT1 that associated with eight traits related to growth and wood properties, in a population of 460 unrelated individuals of P. tomentosa. This analysis identified 27 associations, with the proportions of phenotypic variance (R (2)) contributed by each SNP ranging of 0.82-15.81 %, the additive effects of each SNP ranging of 0.16-18.09, and the dominant effects ranging from -14.09 to 19.00. Epistatic interaction models showed a strong interaction among SNPs in the miRNA target with R (2) of 0.1-3.56 %, and information gain of significant SNP pairs of -3.09 to 0.93 %, representing the regulatory interactions between the miRNA and the mRNA. Thus, we used a new strategy that combines association genetics and expression profiling based on SNPs to study the regulatory relationship between this miRNA and its target mRNA, thereby providing novel advances in our understanding of the genetic architecture of important traits.


DOI: 10.1007/s00425-015-2287-3
PubMed: 25833262


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Association mapping in Populus reveals the interaction between Pto-miR530a and its target Pto-KNAT1.</title>
<author>
<name sortKey="Yang, Xiaohui" sort="Yang, Xiaohui" uniqKey="Yang X" first="Xiaohui" last="Yang">Xiaohui Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China, yangxiaohui82122@163.com.</nlm:affiliation>
<country wicri:rule="url">Oman</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China</wicri:regionArea>
<wicri:noRegion>People's Republic of China</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Du, Qingzhang" sort="Du, Qingzhang" uniqKey="Du Q" first="Qingzhang" last="Du">Qingzhang Du</name>
</author>
<author>
<name sortKey="Chen, Jinhui" sort="Chen, Jinhui" uniqKey="Chen J" first="Jinhui" last="Chen">Jinhui Chen</name>
</author>
<author>
<name sortKey="Wang, Bowen" sort="Wang, Bowen" uniqKey="Wang B" first="Bowen" last="Wang">Bowen Wang</name>
</author>
<author>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25833262</idno>
<idno type="pmid">25833262</idno>
<idno type="doi">10.1007/s00425-015-2287-3</idno>
<idno type="wicri:Area/Main/Corpus">001D56</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001D56</idno>
<idno type="wicri:Area/Main/Curation">001D56</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001D56</idno>
<idno type="wicri:Area/Main/Exploration">001D56</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Association mapping in Populus reveals the interaction between Pto-miR530a and its target Pto-KNAT1.</title>
<author>
<name sortKey="Yang, Xiaohui" sort="Yang, Xiaohui" uniqKey="Yang X" first="Xiaohui" last="Yang">Xiaohui Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China, yangxiaohui82122@163.com.</nlm:affiliation>
<country wicri:rule="url">Oman</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China</wicri:regionArea>
<wicri:noRegion>People's Republic of China</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Du, Qingzhang" sort="Du, Qingzhang" uniqKey="Du Q" first="Qingzhang" last="Du">Qingzhang Du</name>
</author>
<author>
<name sortKey="Chen, Jinhui" sort="Chen, Jinhui" uniqKey="Chen J" first="Jinhui" last="Chen">Jinhui Chen</name>
</author>
<author>
<name sortKey="Wang, Bowen" sort="Wang, Bowen" uniqKey="Wang B" first="Bowen" last="Wang">Bowen Wang</name>
</author>
<author>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
</author>
</analytic>
<series>
<title level="j">Planta</title>
<idno type="eISSN">1432-2048</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chromosome Mapping (MeSH)</term>
<term>Epistasis, Genetic (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Dominant (MeSH)</term>
<term>Genetic Loci (MeSH)</term>
<term>Linkage Disequilibrium (genetics)</term>
<term>MicroRNAs (genetics)</term>
<term>MicroRNAs (metabolism)</term>
<term>Nucleotides (genetics)</term>
<term>Organ Specificity (genetics)</term>
<term>Phenotype (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Polymorphism, Single Nucleotide (genetics)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Protein Binding (MeSH)</term>
<term>Quantitative Trait, Heritable (MeSH)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Caractère quantitatif héréditaire (MeSH)</term>
<term>Cartographie chromosomique (MeSH)</term>
<term>Déséquilibre de liaison (génétique)</term>
<term>Gènes dominants (MeSH)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Locus génétiques (MeSH)</term>
<term>Nucléotides (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Polymorphisme de nucléotide simple (génétique)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Spécificité d'organe (génétique)</term>
<term>microARN (génétique)</term>
<term>microARN (métabolisme)</term>
<term>Épistasie (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>MicroRNAs</term>
<term>Nucleotides</term>
<term>Plant Proteins</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Linkage Disequilibrium</term>
<term>Organ Specificity</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Déséquilibre de liaison</term>
<term>Nucléotides</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Spécificité d'organe</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>MicroRNAs</term>
<term>Plant Proteins</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Protéines végétales</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromosome Mapping</term>
<term>Epistasis, Genetic</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Dominant</term>
<term>Genetic Loci</term>
<term>Phenotype</term>
<term>Phylogeny</term>
<term>Protein Binding</term>
<term>Quantitative Trait, Heritable</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Caractère quantitatif héréditaire</term>
<term>Cartographie chromosomique</term>
<term>Gènes dominants</term>
<term>Liaison aux protéines</term>
<term>Locus génétiques</term>
<term>Phylogenèse</term>
<term>Phénotype</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Épistasie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>MAIN CONCLUSION</b>
</p>
<p>We used transcript profiling and multi-SNP association to investigate the genetic regulatory relationship between miRNA Pto-miR530a and its target Pto-KNAT1, identifying additive, dominant, and epistatic effects. MicroRNAs (miRNAs) play crucial roles in the post-transcriptional regulation of plant growth and development; indeed, many studies have described the importance of miRNA-target interactions in herbaceous species. However, elucidation of the miRNA-target interactions in trees may require novel strategies. In the present study, we describe a strategy combining expression profiling by reverse transcription quantitative PCR (RT-qPCR) and association mapping with multiple single nucleotide polymorphisms (SNPs) to evaluate the interaction between Pto-miR530a and its target Pto-KNAT1 in Populus tomentosa. RT-qPCR analysis showed a negative correlation (r = -0.62, P < 0.05) between expression levels of Pto-miR530a and Pto-KNAT1 in eight tissues. We used a Bayesian hierarchical model to identify allelic variants of Pto-miR530a and Pto-KNAT1 that associated with eight traits related to growth and wood properties, in a population of 460 unrelated individuals of P. tomentosa. This analysis identified 27 associations, with the proportions of phenotypic variance (R (2)) contributed by each SNP ranging of 0.82-15.81 %, the additive effects of each SNP ranging of 0.16-18.09, and the dominant effects ranging from -14.09 to 19.00. Epistatic interaction models showed a strong interaction among SNPs in the miRNA target with R (2) of 0.1-3.56 %, and information gain of significant SNP pairs of -3.09 to 0.93 %, representing the regulatory interactions between the miRNA and the mRNA. Thus, we used a new strategy that combines association genetics and expression profiling based on SNPs to study the regulatory relationship between this miRNA and its target mRNA, thereby providing novel advances in our understanding of the genetic architecture of important traits.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25833262</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>04</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-2048</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>242</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Planta</Title>
<ISOAbbreviation>Planta</ISOAbbreviation>
</Journal>
<ArticleTitle>Association mapping in Populus reveals the interaction between Pto-miR530a and its target Pto-KNAT1.</ArticleTitle>
<Pagination>
<MedlinePgn>77-95</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00425-015-2287-3</ELocationID>
<Abstract>
<AbstractText Label="MAIN CONCLUSION" NlmCategory="CONCLUSIONS">We used transcript profiling and multi-SNP association to investigate the genetic regulatory relationship between miRNA Pto-miR530a and its target Pto-KNAT1, identifying additive, dominant, and epistatic effects. MicroRNAs (miRNAs) play crucial roles in the post-transcriptional regulation of plant growth and development; indeed, many studies have described the importance of miRNA-target interactions in herbaceous species. However, elucidation of the miRNA-target interactions in trees may require novel strategies. In the present study, we describe a strategy combining expression profiling by reverse transcription quantitative PCR (RT-qPCR) and association mapping with multiple single nucleotide polymorphisms (SNPs) to evaluate the interaction between Pto-miR530a and its target Pto-KNAT1 in Populus tomentosa. RT-qPCR analysis showed a negative correlation (r = -0.62, P < 0.05) between expression levels of Pto-miR530a and Pto-KNAT1 in eight tissues. We used a Bayesian hierarchical model to identify allelic variants of Pto-miR530a and Pto-KNAT1 that associated with eight traits related to growth and wood properties, in a population of 460 unrelated individuals of P. tomentosa. This analysis identified 27 associations, with the proportions of phenotypic variance (R (2)) contributed by each SNP ranging of 0.82-15.81 %, the additive effects of each SNP ranging of 0.16-18.09, and the dominant effects ranging from -14.09 to 19.00. Epistatic interaction models showed a strong interaction among SNPs in the miRNA target with R (2) of 0.1-3.56 %, and information gain of significant SNP pairs of -3.09 to 0.93 %, representing the regulatory interactions between the miRNA and the mRNA. Thus, we used a new strategy that combines association genetics and expression profiling based on SNPs to study the regulatory relationship between this miRNA and its target mRNA, thereby providing novel advances in our understanding of the genetic architecture of important traits.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Xiaohui</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China, yangxiaohui82122@163.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Du</LastName>
<ForeName>Qingzhang</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Jinhui</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Bowen</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Deqiang</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>04</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Planta</MedlineTA>
<NlmUniqueID>1250576</NlmUniqueID>
<ISSNLinking>0032-0935</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009711">Nucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="Y">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004843" MajorTopicYN="Y">Epistasis, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005799" MajorTopicYN="N">Genes, Dominant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056426" MajorTopicYN="N">Genetic Loci</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015810" MajorTopicYN="N">Linkage Disequilibrium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035683" MajorTopicYN="N">MicroRNAs</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009711" MajorTopicYN="N">Nucleotides</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009928" MajorTopicYN="N">Organ Specificity</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019655" MajorTopicYN="N">Quantitative Trait, Heritable</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>10</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>03</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>4</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>4</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25833262</ArticleId>
<ArticleId IdType="doi">10.1007/s00425-015-2287-3</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2011 May;188(1):197-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21385726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Nov 6;456(7218):18-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18987709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2008 May 20;18(10):758-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18472421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Jun 14;340(6138):1324-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23766324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Feb 28;6(2):e17458</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21386988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1987 Jul;4(4):406-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3447015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Jan;158(1):531-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22052017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2008 Nov;9(11):855-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18852697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jul;55(1):131-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18363789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Oct 12;318(5848):271-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17761850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2005 May 1;19(9):1067-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15833912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Mar;155(3):1214-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BioData Min. 2013 Feb 18;6(1):4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23418869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Nov;15(11):2730-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14555699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Jan 14;120(1):15-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15652477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2005 Apr;8(4):517-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10848-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23754401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Dec 26;115(7):787-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14697198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 Mar;3(3):e85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15723116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D68-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24275495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2006 Aug;61(6):917-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16927204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2007 May 1;16(9):1124-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17400653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2005 Oct 27;353(17):1793-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16251535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 May;37(5):495-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15806104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2012 Jun 8;90(6):1046-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22658545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Sep 4;455(7209):58-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18668040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:19-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 May 07;8(5):e62681</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23667507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Jun 3;332(6034):1190-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21636771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Nov;171(3):1257-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16085705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Sep 4;455(7209):64-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18668037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Apr;175(4):1955-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17277367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 May;23(10):2486-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24750333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(12):e53116</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23300875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2013 May 15;22(10):2010-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23393158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Jan 23;116(2):281-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14744438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Am. 2009 Jun;300(6):46-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19485088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Apr 15;17(8):991-1008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12672692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2001 Jul;28(3):286-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11431702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Feb 15;27(4):516-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21156729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jan 26;315(5811):525-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17185560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Dec 11;456(7223):728-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19079049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2006 Apr;60(6):929-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16724262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2013 Nov 06;3(11):2069-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24048648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2186-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Dec;60(6):1000-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19737362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13653-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21810988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Sep 18;425(6955):257-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12931144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 May 20;105(20):7269-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18474871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Mar 26;303(5666):2022-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12893888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2014 Nov;141(22):4311-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25371365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Dec 16;310(5755):1817-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16308420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Jan;205(2):682-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25377848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2007 Sep 15;16(18):2226-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17616513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2012 Nov-Dec;103(6):853-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23008443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Feb 20;10(2):e1004120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24586182</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Oman</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chen, Jinhui" sort="Chen, Jinhui" uniqKey="Chen J" first="Jinhui" last="Chen">Jinhui Chen</name>
<name sortKey="Du, Qingzhang" sort="Du, Qingzhang" uniqKey="Du Q" first="Qingzhang" last="Du">Qingzhang Du</name>
<name sortKey="Wang, Bowen" sort="Wang, Bowen" uniqKey="Wang B" first="Bowen" last="Wang">Bowen Wang</name>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
</noCountry>
<country name="Oman">
<noRegion>
<name sortKey="Yang, Xiaohui" sort="Yang, Xiaohui" uniqKey="Yang X" first="Xiaohui" last="Yang">Xiaohui Yang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E83 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001E83 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25833262
   |texte=   Association mapping in Populus reveals the interaction between Pto-miR530a and its target Pto-KNAT1.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25833262" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020